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Abstract - This thesis covers the underlying mechanisms of grasping and an oscillating system. It uses impedance control 

methods to stabilize the system and reach a cyclical behavior where an object, a pen, is oscillated by two robotic fingers. A 

bio-inspired perception system is employed for the detection of the position of the object, in relation to the robotic hand, which 

in turn uses this information for its manipulation. Such detection is obtained via the forces and position of said forces on the 

fingertips of the robotic system. Through the system’s perception of the position of its fingertips and the aforementioned 

detection of the pen’s position, an impedance control method was put forward, through the control of the grasping force and 

the following of a sinusoidal reference for the object’s trajectory. Further, the analysis of the system allowed to show the 

presence of a resonant frequency at which the oscillation magnitude of the object could be maximized. The system’s response 

is discussed for a range of frequencies. At higher frequencies, the phenomenon of period doubling is made evident, where a 

new periodic trajectory emerges from the existing periodic trajectory at which the pen had been moving thus far. 

 

Keywords: Bioinspired grasping, Cyclical behavior, Impedance control, Impedance of grasping, Oscillating system. 

 

1 INTRODUCTION 

The act of object grasping is quite a complex ability, unique 

to some select few in the animal kingdom [1] and without a 

doubt the most important trait that allowed for the evolution 

of Homo sapiens, humans, as we know them today. It allowed 

early primates to take up tool use [2] and to control fire [3, 

4], two defining abilities that mark the start of the human era. 

Grasping is not easy, which is reflected on the abundance, or 

lack thereof, of this ability in the wild [2]. This technique 

proves very worthwhile, though the combination of high 

dexterity and intelligence is often prohibitive to many, it 

rewards greatly those who master it [5] with a rapid ascension 

in the food chain hierarchy. This ability was used by ancient 

humans for tool making [6, 7] and it took up a big part of their 

time, where the ability to grasp and work the tool were crucial 

for survivability. 

1.1 Motivation 

The motivation behind this essay lies on the drive to 

better understand the art of grasping and the ability for 

complex hand maneuvers. How this knowledge could be 

applied to robotics or possibly prosthetics, where a 

mechanical system need be able to execute the fluid yet 

complex movements a human can do with ease, almost 

without any critical thinking behind it. 

Contemporary uses of grasping in robotic handling 

generally consist of holding the grasped object steady and 

firmly to manipulate it [8, 9, 10]. In these cases, the robot 

does not consider motion decoupled from the object being 

manipulated. This work attempts to use the mix of quick 

movements and impedance control to dynamically 

manipulate and oscillate an object, and to act as an inspiration 

for further development in the dynamic manipulation of 

objects. 

1.2 Objective and Methods 

The goal of this study is to build a biologically inspired model 

of a robotic hand and a controller capable of handling a pen 

through complex motion, specifically the ability to wiggle the 

pen on the fingertips, making an oscillating cycling motion. 

The model must reflect its biological counterparts regarding 

the sensing and the signal propagation of the system. 

Additionally, the controller should be robust regarding the 

system’s operating characteristics and outside factors that 

might disturb the well-functioning of the system. 

Towards this goal, such model was constructed, and 

an impedance-based control was implemented at the level of 

grasping and object maneuverability, while position control 

was implemented at the level of the positioning of the fingers. 

The system’s response is then thoroughly discussed and 

analyzed so as to evaluate its stability, robustness and 

cyclicity. 

2 MODEL 

The geometric hypotheses for the model are that the problem 

can be simplified as a 2-D task, both fingertips are identical, 

of circular geometry, the pen is cylindrical and perfectly 

straight, and the contact occurs in a singular point on the 

bodies. Given these, a kinematic model for each body was 

created. For ease of writing, the pen will be referenced as 

body 1 and the upper fingertip and lower fingertip as body 2 

and 2′ respectively in this document. Below, in Figure 2.1, 
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the pen’s model is illustrated. In Figure 2.2 the robotic hand’s 

model is illustrated, where its construction is displayed. 

 

 
Figure 2.1 – Pen model. The pen is able to move along both the x-

axis and y-axis and is able to rotate around the z-axis and its rotation 

is given by the angle q. Its reference frame is numerated with the 

number 1. 

 

 
Figure 2.2 – Robotic hand model. The wrist joint is represented as a 

cylinder, conveying a rotation between the fixed base and the 

fingertips by an angle 𝜃. The fingertips have their respective frames 

of reference attached to them, namely 2 and 2′. Their displacement 

from the rotation axis, 𝑧0, is measured along 𝑦2 and 𝑦2
′ , as noted by 

𝑟 and 𝑟′. 

 

Table 1 – Parameters of the dynamic models. The finger 

corresponds to the full finger, including the fingertip and the finger 

body, moved by the prismatic joint. The inertia that of the body’s z-

axis, at its center of mass. The center of mass is in relation to the 

geometric center of the object, in the 2-D plane considered in this 

document. 

 Mass [𝑔] Inertia [𝑔 𝑚𝑚2] Center of mass [𝑚𝑚] 

Pen 4.5 7099.9 [0 0 0]𝑇 

Finger 16.3 1651.7 [0 0 55.55]𝑇 

Base 158.7 17584.0 [0 0 0]𝑇 

The pen’s center of mass and geometric center match, and the 

pen has a length of 132 mm and a diameter of 8 mm. The 

fingertip’s center of mass and geometric center also match 

and the fingertip has a radius of 8.89 mm. In Table 1, the 

dynamic parameters of the models are gathered. 

2.1 Simulation environment 

The environment consists of the two subsystems, the robotic 

hand and the pen. These are simulated in a virtual world that 

is affected by gravity, with a magnitude of 9.81 m/s2 and the 

negative direction of the y-axis.  

2.2 Contact 

The contact is defined using a penetration distance, 𝛿, that 

measures the penetration of the bodies on each other. By 

using the position and velocity of the pen and the fingertips, 

and 𝛿, it is possible to obtain the forces that would result from 

the contact between them. 

2.2.1 Normal force 

The normal force, 𝐹𝑛, from [11], is given by  

𝐹𝑛 = {
−𝐾 𝛿𝑎,                  𝛿 ≥ 0
             0,         otherwise.

 (2.1) 

where 𝑎 is a geometry exponent and 𝐾 can be calculated by 

the expression 

𝐾 =

{
 
 

 
 𝑘 (1 +

𝛿

�̇�−

̇
𝛽),                                                �̇� ≥ −휀�̇�−

𝑘(1 − 𝛽휀)exp (
𝛽

1 − 𝛽휀

�̇� + 휀�̇�−

�̇�−
) , otherwise.

 (2.2) 

where 𝑘 is the nonlinear stiffness coefficient of the collision 

(𝑘 = 2 × 105), �̇�− is the value of �̇� right before impact, 휀 is 

the restitution coefficient and 𝛽 is the inverse restitution. 

2.2.2 Friction force 

The friction force can be split into two states, the static 

friction state, when the objects are in adhesion, and the 

dynamic friction state, when the objects slide over one 

another. The transition between these states is detailed in 

Figure 2.3. This system was adapted from [12]. The transition 

from sliding to adhesion occurs when contact velocities are 

very small [13], and the transition from adhesion to sliding 

occurs when the static friction force overcomes the allowable 

force as per Coulomb’s friction law [13, 14]. 

 

Figure 2.3 – State machine of the friction force. The system begins 

at the sliding state. Coefficients 𝜇𝑠 and 𝜇𝑑 adapted from [14, 15]. 
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The contact transitions to adhesion if the tangential 

velocity between the bodies, 𝑣𝑥, is lower than some limit 

𝑣𝑙𝑖𝑚. The transition from adhesion to sliding occurs when the 

normal force, 𝐹𝑛, multiplied by the static coefficient 𝜇𝑠 is 

lower than the static friction force 𝐹𝑡,𝑠. 

2.2.2.1 Static friction (Adhesion) 

The static friction, 𝐹𝑡,𝑠, is modeled as a strictly adhesive 

force, following [11], as 

𝐹𝑡,𝑠 = −𝐾𝑠 𝑠𝑥 exp(𝜂 tanh(𝛾 𝑠𝑥) 𝑣𝑥). (2.3) 

compromising a nonlinear spring, with stiffness 𝐾𝑠, and a 

nonlinear damping, 𝜂, where 𝑠𝑥 is the spring’s displacement, 

𝑣𝑥 the spring’s velocity and 𝛾 a smoothing constant. The 

spring’s displacement, 𝑠𝑥, is calculated from 𝑣𝑥 by 

integration, from the time at which adhesive contact beings, 

𝑡0, to 𝑡 > 𝑡0 the time during the contact event. The initial 

spring’s displacement, 𝑠𝑥(𝑡0), is the displacement equivalent 

to the dynamic friction force, from the transition 

𝑠𝑥(𝑡) =  ∫ 𝑣𝑥(𝑢)𝑑𝑢 + 𝑠𝑥(𝑡0)
𝑡

𝑡0

. (2.4) 

2.2.2.2  Friction force (Sliding) 

The dynamic friction was modeled following Coulomb’s 

friction law [13], such that the friction force is given as 

𝐹𝑡,𝑑 = −sign(𝑣𝑥) 𝐹𝑛 𝜇𝑑, (2.5) 

where 𝜇𝑑 is the dynamic coefficient [15]. The initial spring’s 

displacement, 𝑠𝑥(𝑡0), mentioned earlier, is calculated by 

establishing continuity between the adhesion and sliding 

friction forces, 𝐹𝑡,𝑑 = 𝐹𝑡,𝑠, such that with  

𝑣𝑥 < 𝑣𝑙𝑖𝑚~10
−3, it is calculated as 

𝑠𝑥(𝑡0) =
𝐹𝑡,𝑑

𝐾𝑠
. (2.6) 

3 PHYSIOLOGY OF THE HUMAN TOUCH – 

PERCEPTION 

With the purpose of creating a bio-inspired controller for the 

hand, it is important for the perception of the model to also 

be nature-like and to follow the physiological limits of a 

human hand. It therefore is essential to know the intricacies 

of the human touch, which means getting to know the 

mechanoreceptors in the fingertips and in the relevant 

muscles, in order to replicate their behavior. The following 

was gathered from [16].  

3.1 Skin mechanoreceptors 

A mechanoreceptor is a sensory receptor that responds to 

mechanical pressure or distortion. There are several types of 

these sensors within the human skin. This document focuses 

on the study of the mechanoreceptors located in glabrous 

(hairless) mammalian skin, which is the skin present in the 

fingertips of primates and other mammals similar to humans. 

There are four main types of mechanoreceptors in the skin 

region, from which three will be discussed, namely Meissner 

corpuscles, Merkel cells and Ruffini endings. 

3.1.1 Meissner corpuscles 

The Meissner corpuscle is a rapid adapting type 1 (close to 

skin surface) receptor, abbreviated as RA1. This corpuscle is 

responsible for sensitivity to light touch, slippage of objects 

and the detection of the texture of surfaces it encounters. The 

key features that the Meissner corpuscle would be able to 

integrate into the present model are then: 

• Normal force;  

• Tangential force. 

3.1.2  Merkel cells 

Merkel cells are slowly adapting type 1 receptors, 

abbreviated as SA1, located near the epidermis. They are 

responsible for detecting the amount of pressure applied on 

the skin and are particularly sensitive to edges, corners and 

points. Similarly to the Meissner corpuscle, they also play an 

important role in the detection of textures. The key features 

that the Merkel cells would be able to integrate into the 

present model are then: 

• Position of contact with the finger and its rate of 

change. 

3.1.3  Ruffini endings 

Ruffini endings are slowly adapting type 2 receptors, SA2, 

that extend from the subcutaneous tissue to folds in the skin 

at the joints, in the palm or in the fingernails. These receptors 

are sensitive to the shape of large objects and can signal 

movements of the fingers and other joints due to stretch in the 

overlying skin. In combination with the muscle 

mechanoreceptors, mentioned in the next section, the key 

features that the Ruffini endings would be able to integrate 

into the present model are then: 

• Position of finger; 

• Position of the wrist. 

3.2 Muscle mechanoreceptor: Muscle spindle 

Muscle mechanoreceptors are sensory neurons located within 

the muscle. One of these, muscle spindles, are proprioceptors 

whose main function it is to provide information on muscle 

length and the rate of change of muscle length. These 

receptors run parallel to the muscle fibers. The key features 

that the muscle spindle would detect from the model are then: 

• Position and velocity of the finger; 

• Angle and angular velocity of the wrist. 

3.3 Model variables usable from the model 

It then follows that from the many sensory cells and 

mechanisms discussed above that there are a total of 14 state 

variables usable for the perception and control of the pen. 

Briefly, these are: 
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1. Angle between the pen and the upper finger (�̂�); 
2. Angle between the pen and the lower finger (�̂�′); 
3. Rate of change of the angle between the pen and the 

upper finger (�̇̂�); 

4. Rate of change of the angle between the pen and the 

lower finger (�̇̂�′); 

5. Tangential force felt by the upper finger (�̂�𝑡); 

6. Normal force felt by the upper finger (�̂�𝑛); 

7. Tangential force felt by the lower finger (�̂�𝑡
′); 

8. Normal force felt by the upper finger (�̂�𝑛
′); 

9. Upper finger’s position (�̂�); 
10. Lower finger’s position (�̂�′); 

11. Wrist’s angle (�̂�); 

12. Upper finger’s velocity (�̇̂�); 

13. Lower finger’s velocity (�̇̂�′); 

14. Wrist’s angular velocity (�̇̂�). 

4 ESTIMATION OF THE PEN’S POSITION 

In order to detect the pen’s position, the estimator is assumed 

to know the dimensions, the mass and the inertia of the pen 

and finger. Moreover, for detection to take place, a normal 

force must be detected on the fingers, marking the pen’s 

presence known. If no forces are detected in either finger, 

then the pen is not detected, resulting in its position being 

assumed to be where it was last detected at. 

 

4.1 Angle estimation 

The estimated angle of the pen �̂� is calculated simply as the 

estimated angle of the wrist (�̂�) plus the estimated angle of 

contact (�̂�),  

�̂� =  �̂� + �̂�. (4.1) 

As the angle �̂� is only detected when there is contact with the 

pen, equation (4.1) is only valid when one of the fingers is in 

contact with the pen. By differentiating equation (4.1), the 

estimated pen’s angular velocity is obtained as the sum of the 

angular velocity of the wrist and the contact’s, 

�̇̂� =  �̇̂� + �̇̂�. (4.2) 

Due to the limitations of the sensory system, the 

angular acceleration of the wrist and the contact’s is unknown 

and as such needs to be approximated. To do so, consider that 

there is a frequency at which the estimation of �̂� and �̂� are 

precepted, in the muscle, [17, 18], and on the Merkel cells, 

[16], respectively. This frequency results in a time sample of 

0.01 seconds, which can be used to estimate the angular 

acceleration, by subtracting the estimated angular velocity of 

the pen and the angular velocity estimated at a previous 

timestep and then dividing over the time sample, resulting in 

�̈̂� =
�̇̂�𝑡 − �̇̂�𝑡−1 

𝑇𝑠
. (4.3) 

4.2 Position estimation 

Secondly, the position of the pen in relation to the fingers is 

estimated. To this end, the distance between the fingers is 

first calculated by using the angle at which the pen is felt on 

the finger (�̂�) as follows. 

 
Figure 4.1 – Illustration of the pen between the fingers and definition 

of relevant variables for detection. The distance between the fingers, 

in the tangential direction of the pen, is given by 𝜆. The x component 

of the distance from the pen’s contact points to its center of mass, 𝑠 
and 𝑠′ are defined. 𝑀 is the intersection point between a line that 

joins the two fingers and the pen’s x-axis, 𝑥1. 

 

As illustrated in Figure 4.1, the interfinger distance (𝜆) is 

estimated as 

𝜆 = 2 (𝑑 +
𝑤

2
) tan(�̂�). (4.4) 

Then, the forces felt on the fingers are used to estimate the 

forces affecting the pen, on the upper contact point 

�̂�1 = �̂�2
1(−�̂�2), (4.5) 

and lower contact point 

�̂�1
′ = �̂�2′

1 (−�̂�2
′ ). (4.6) 

These forces are used to estimate the distance they span from 

the center of mass of the pen by equating all the torques 

applied on the pen and its apparent rotation on the fingers. 

Towards this end, the distances from the upper finger and the 

lower finger to the center of mass of the pen, 𝑠 and 𝑠′, are first 

related to the interfinger distance, as 

�̂� = 𝜆 + �̂�′. (4.7) 

Also, the position vectors for both contact points (�̂�1 and �̂�1′) 
on the pen are able to be estimated as 

Upper finger 

𝒙2 

𝒚2 

𝛼 

Lower finger 

Pen 
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�̂�1 = [�̂�
𝑤

2
0]
𝑇

 (4.8) 

and 

�̂�1
′ = [�̂�′ −

𝑤

2
0]
𝑇

. (4.9) 

  

Then the torque balance can be equated, resulting in 

𝐼𝑧,𝑝 �̈̂� = �̂�1 × �̂�1 + �̂�1
′ × �̂�1

′ . (4.10) 

where 𝐼𝑧,𝑝 is the inertia of the pen. Now, introduction of 

equations (4.7), (4.8) and (4.9) into (4.10), results in 

𝐼𝑧,𝑝 �̈̂� =  −�̂�𝑡  
𝑤

2
+ �̂�𝑛 �̂� − �̂�𝑡

′ (−
𝑤

2
) + �̂�𝑛

′ �̂�′ (4.11) 

and the distance from the fingers to the center of mass can be 

solved as 

{
 
 

 
 
�̂�′ =

𝐼𝑧,𝑝 �̈̂� +
𝑤

2
�̂�𝑡 − 𝜆 �̂�𝑛 −

𝑤

2
�̂�𝑡
′

�̂�𝑛 − �̂�𝑛
′

,

�̂� = 𝜆 + �̂�′.  
 

                                      

 (4.12) 

With the distances between the center of mass and 

each finger calculated, the distance between the mass center 

and point 𝑀 can now be calculated as the average of both 

distances, in the opposite direction. Thus, the displacement 

from point 𝑀 towards the mass center can be estimated, in 

the world frame, as 

 �̂�𝑀,1 = �̂�1
0 [
− (

�̂�+�̂�′

2
)

0
0

]. (4.13) 

The next step is to calculate the contribution of the 

fingers’ position to the position of the pen’s center of mass. 

Towards this end, a line is imagined connecting the fingers 

vertically, like done in Figure 4.2. 

   
Figure 4.2 – A vertical dotted line connects the two fingers. The 

intersection between this line and the pen’s 𝑥1 axis is the point 𝑀, 

marked by a blue circle. ȁΥȁ is the distance between the 𝑧0 axis and 

point 𝑀 and it is measured positively along 𝑦2. The distance 

between 𝑀 and the finger in contact with the pen is denoted as ℎ. 

 

Then the vertical distance from the point 𝑀 to the 

axis 𝑧0, Υ, is estimated, illustrated in Figure 4.2. In the simple 

case where both fingers are in contact with the pen, this 

height comes up to the average of the fingers’ estimated 

distance to the wrist �̂� and �̂�′, given as 

Υ =
�̂� − �̂�′

2
, adjacent to both fingers. (4.14) 

 

However, if the pen is only in contact with one of the fingers, 

as seen on Figure 4.2, Υ can be calculated as the distance ℎ 

from the finger, calculated according to the Pythagoras’ 

theorem as (𝛿 ≈ 0) 

ℎ = √(
𝜆

2
)
2

+ (𝑑 +
𝑤

2
)
2

 (4.15) 

and the finger’s distance to the wrist, �̂�, 

Υ = {
�̂� − ℎ, adjacent to upper finger,

ℎ − �̂�′, adjacent to lower finger.
 (4.16) 

 Finally, the center of mass from the contribution of the 

fingers’ position can be calculated as 

�̂�0,𝑀 = �̂�2
0 [
0
Υ
0
] (4.17) 

The position of the center of mass of the pen is then the sum 

of both contributions in equations (4.13) and (4.17) 

�̂�1 = �̂�0,𝑀 + �̂�𝑀,1. (4.18) 

4.3 Validation 

In order to estimate the pen’s position through a simple 

exercise, the fingers were made to remain immobile and 16 

centimeters apart (more than the pen’s width). The pen was 

initialized with its center of mass at the coordinates 

(𝑥, 𝑦, 𝑧) = (2, 0, 0) centimeters and with an initial angle of 0 

(horizontal). This exercise leads to the pen falling onto the 

lower finger and slipping to the side it is offset to, leading to 

contact with the upper finger as it rotates around the bottom 

one. As this happens, the friction from the slippage on both 

fingers brings the pen to a stop.  

 

The angular acceleration estimated in equation (4.3) 

is compared to the true angular acceleration of the pen so as 

to assess the accuracy of the estimation being made. Given 

the exercise, meaningful angular accelerations are observed 

at the moment of contact, marked by a black vertical line in 

Figure 4.3, at around 0.11 seconds. 

𝑀 

ȁℎȁ 

𝑟 

𝑟′ 

𝒙2 

𝒙2′ 

𝒚2 

𝒚2′ 

Υ < 0 
𝑧0 
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Figure 4.3 – Estimation of the pen’s angular acceleration and its real 

angular acceleration, compared. In black, a vertical line illustrates 

when contact takes place. 

 

Analyzing Figure 4.3, it is clear that the estimated 

pen’s angular acceleration roughly follows its true angular 

acceleration. When the true angular acceleration has very 

high values though, or when these values have a high rate of 

change, the estimated angular acceleration does not match the 

true values well. The impact of this mismatch on the 

prediction of the pen’s position is heavy, illustrated in the 

next figure.  

 
Figure 4.4 – Estimation of the position of the pen using its estimated 

angular acceleration. On the left, the pen’s estimated position and 

real position. On the right, the pen’s position error. In black, a 

vertical line illustrates when contact takes place. 

 Regarding the estimated angle of the pen, it can be 

estimated smoothly throughout the whole event, as it is not 

computed from the estimated angular acceleration. 

5 CONTROLLER 

The purpose of the controller is to make the pen oscillate from 

side to side, in between the fingers. The goal is for this 

oscillation to be a smooth movement. For this to be feasible, 

the grasping force on the pen cannot either be too much, as it 

would restrict the pen’s movement, nor too little, as it would 

lead to the pen slipping off its grasp. 

In this section a controller is introduced that is 

composed of three parts. These parts consist of a controller 

for the finger’s position, an impedance controller for stable 

grasping and an object manipulation controller. The first two 

controllers produce a control action of force that, summed, 

represent the control action of force, applied on the finger 

joints. The third controller produces an action of torque, 

applied to the wrist.  

5.1 Finger position control 

The control of the position of the fingers is essentially needed 

to keep the fingers close and equidistant to the wrist’s axis of 

rotation, as well as to dissipate energy associated with the 

movement of the fingers. Towards this end, the center-point 

of the fingers, (𝑟 − 𝑟′)/2 , is controlled as a critically 

damped system and the radial velocity of the fingers, �̇� and 

�̇�′, is fed back negatively. Thus, the control action for the 

upper finger is given as 

𝐹1 = 𝐾𝑝,𝑓 (𝑟𝑟 −
(𝑟 − 𝑟′)

2
) + 𝐾𝑑,𝑓 (�̇�𝑟 −

(�̇� − �̇�′)

2
) − 𝐾𝑣,𝑓 �̇�, (5.1) 

with equivalent control for the lower one, where 𝑟𝑟  and �̇�𝑟 are 

the reference position and velocity for the center-point of the 

fingers, respectively, which are set to zero as it is intended 

that the finger’s center-point be positioned on the wrist’s axis 

of rotation. 𝐾𝑝,𝑓, 𝐾𝑑,𝑓 and 𝐾𝑣,𝑓 are the control gains regarding 

the position and velocity of the center-point of the fingers and 

velocity of the fingers, respectively. Consider the 

displacement of the center point due to gravity alone. Then, 

for an allowable deviation from the wrist’s axis of rotation of 

about 0.5 millimeters, 𝐾𝑝 can be calculated such that 

𝐾𝑝,𝑓(5 × 10
−4) = (𝑚𝑝 + 2𝑚𝑓)𝑔, (5.2) 

where 𝑚𝑝 is the pen’s mass, 𝑚𝑓 is the mass of one finger and 

𝑔 is the acceleration of gravity. Assuming that the system is 

linear, this results in a control gain of 𝐾𝑝,𝑓 ≈ 729, from 

which follows for a critical damping  

𝐾𝑑,𝑓 =  2(𝑚𝑝 + 2𝑚𝑓)√
𝐾𝑝,𝑓

𝑚𝑝+2𝑚𝑓
= 10.4. Lastly 𝐾𝑣,𝑓 was 

determined experimentally, resulting in 𝐾𝑣 = 10. 

5.2 Stable grasping impedance 

For stable grasping, there needs to be a grasping force such 

that the frictional force between the pen and the fingers is 

enough to not let the pen slip but not too much that it overly 

restricts the pen’s movement. The control action employed 

for this task, for the upper finger, consists in a proportional 

control where a reference penetrating distance on the pen is 

set [9], given as 

𝐹2 = −𝐾𝑝,𝛿(𝛿𝑟 − �̂�), (5.3) 

where 𝛿𝑟 is a reference value for the penetrating distance and 

𝐾𝑝,𝛿 is a control gain. The current estimated penetrating 

distance, �̂�, is calculated according to the pen’s estimated 

position, �̂�1. Equivalent control action is used for the lower 

finger.  

Consider now an exercise where the pen is held 

vertically between the fingers, such that the only force 
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counter acting the pen’s weight is the frictional force, 

resulting in 

𝐹𝑡 = 𝑚𝑝𝑔, (5.4) 

where 𝑚𝑝 is the pen’s mass and 𝑔 is the gravity constant. 

Splitting the frictional force, so that each finger is applying 

half of this force on the pen and considering the state of 

dynamic friction between the bodies (as it is the least stable 

state), then the normal force to be applied on the pen by each 

finger is 

𝐹𝑛 =
𝑚𝑝𝑔

2𝜇𝑑
. (5.5) 

Now, the penetration distance equivalent to such normal 

force, 𝛿∗, can be obtained from equation (2.1), in stationarity 

�̇� = 0, therefore 𝐾(�̇�) = 𝑘, yielding 

𝛿∗ = √
1

𝑘

𝑚𝑔

2𝜇𝑑

𝑎

, (5.6) 

resulting in 𝛿∗ ≈ 5.2 × 10−5. Then, by choosing suitable 

values for the reference of the penetrating distance 𝛿𝑟 and the 

control gain 𝐾𝑝,𝛿, an optimum grasping force can be reached. 

That said, setting 𝛿𝑟 = 8 × 10−5, 𝐾𝑝,𝛿 can be calculated from 

𝑚𝑔

2𝜇𝑑
= 𝐾𝑝,𝛿(𝛿𝑟 − 𝛿

∗), (5.7) 

resulting in 𝐾𝑝,𝛿  ≈ 2.63 × 10
3. 

5.3 Object manipulation impedance 

The manipulation of the object, adapted from [9], is intended 

towards the object’s angle. In such case, the dynamics of the 

object are governed by 

𝑇 + 𝑇𝑒𝑥𝑡 = 𝐼𝑧,𝑝�̈� (5.8) 

where 𝑇 is the manipulation torque exerted on the object by 

the fingertips, 𝑇𝑒𝑥𝑡  is an external perturbation torque and 𝐼𝑧,𝑝 

is the actual inertia of the pen. The desired interaction of the 

system is given as 

𝑇𝑒𝑥𝑡 = 𝐼𝑧,𝑑�̈� + 𝐷𝑇(�̇� − �̇�𝑟) + 𝐾𝑇(𝑞 − 𝑞𝑟) (5.9) 

where 𝑞𝑟 and �̇�𝑟 are the reference angular trajectory, 𝐼𝑧,𝑑 is 

the desired apparent inertia and 𝐷𝑇 , 𝐾𝑇 are the damping and 

stiffness, respectively. As described in [9], by keeping the 

inertia unchanged, 𝐼𝑧,𝑑 = 𝐼𝑧,𝑝. Then, since 𝑇𝑒𝑥𝑡 = 𝐼𝑧,𝑝 �̈� − 𝑇, 

the impedance control law is 

𝑇 = 𝐾𝑇(𝑞𝑟 − �̂�) + 𝐷𝑇(�̇�𝑟 − �̇̂�) (5.10) 

The control gains were manually tuned, set at 𝐾𝑇 =
10 and 𝐷𝑇 = 0, as the presence of overshoot in the angle of 

the pen is actually beneficial for this task (oscillation of the 

pen) and therefore no damping is required. 

5.4 Analysis and discussion 

The control action can then be summed up as a force of grasp 

for the upper and lower fingers, 𝐹 = 𝐹1 + 𝐹2 and 𝐹′ = 𝐹1
′ +

𝐹2
′, respectively, and a torque for the wrist, 𝑇. The system was 

then given a reference signal for the pen’s angle, 𝑞, 

corresponding to a sine wave of amplitude 𝐴 = 0.7 and 

frequency 𝜔 = 19 𝑟𝑎𝑑/𝑠. The pen’s starting position was the 

origin with mass center along 𝑧0. The controlled action was 

recorded and is displayed in Figure 5.1, below. 

 
Figure 5.1 – Controller action to follow the reference of a sine wave 

of amplitude of 𝐴 = 0.7 and frequency 𝜔 = 19 𝑟𝑎𝑑/𝑠. The positive 

direction of torque is anti-clockwise and a positive force on the 

fingers equates to the opening of the finger, while the negative force 

equates to the closing of the finger. 

6 SYSTEM’S RESPONSE ANALYSIS AND 

EXPLORATION 

For the analysis of the system’s response, it is important to 

define the phases of the rotation cycle. In Figure 6.1, these 

phases are depicted. 

 

Figure 6.1 – Representation of a half-cycle of the pen oscillation 

movement on the fingers. On the left, negative twisting, on the right, 

negative rolling. The next half-cycle of the movement would consist 

of these same two movements, in the positive direction of rotation. 

The phases in a cycle are four: negative twisting, 

negative rolling, positive twisting, and positive rolling. This 

movement is similar in each half-cycle, where the only 

difference is the direction of the movement. In the twisting 

phase the fingers apply a torque on the pen which forces is to 

change the direction of its rotation and begin to spin. In the 

rolling phase, the fingers apply a small amount of torque and 

let the pen spin freely. 

Twisting Rolling 
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6.1 Linearized system analysis 

A simplification of the system was performed with the intent 

of calculating the system’s resonant frequency, through its 

linearization. This simplified system is depicted in Figure 

6.2, considered to have an imposed trajectory on the wrist’s 

rotation, 𝜃, as a harmonic oscillator. 

 
Figure 6.2 – Representation of important variables for the simplified 

system. 

The dynamics between the pen and the fingers can be equated 

as 

𝐼𝑧,𝑝�̈� = −2 𝑠0 𝐹𝑛, (6.1) 

where 𝐹𝑛 is the normal force, as stated in (2.1), in the 

simplified form of 

𝐹𝑛 = 𝐾𝑒𝜂�̇�𝛿𝑎. (6.2) 

From Figure 6.2, with some manipulation, the system can be 

written as only a function of 𝛼, as 

𝐼𝑧,𝑝�̈� = 2 𝐾 𝑟0 sin(𝛼) 𝑒
𝜂 𝑟0 sin(𝛼)�̇� (𝑑 +

𝑤

2
− 𝑟0 cos(𝛼))

𝑎

, (6.3) 

By linearizing the system around 𝛼 = 0, the first term of 

Taylor series will be 

�̃� =
𝜕𝜏

𝜕𝛼
|
𝛼=0

𝛼 = 2 𝐾 𝑟0 (𝑑 +
𝑤

2
− 𝑟0)

𝑎

𝛼 (6.4) 

with 𝛼 = 𝜃 − 𝑞. Bearing in mind �̈� = −𝜔𝑟
2 𝑞 is the solution 

to a harmonic oscillator, and 𝜃 = 0 in this linearization, then 

𝑞 = −𝛼 and 

�̈� = 𝜔𝑟
2 𝛼 (6.5) 

from which results, by substitution in (6.4), 

𝜔𝑟 =
√
2 𝐾 𝑟0 (𝑑 +

𝑤

2
− 𝑟0)

𝑎

𝐼𝑧,𝑝
= √

2 𝐾 (𝑑 +
𝑤

2
− 𝛿)𝛿𝑎

𝐼𝑧,𝑝
. (6.6) 

The resonant frequency, 𝜔𝑟, can then be calculated by using 

mean values for the penetration distance 𝛿. It varies with the 

frequency, with values between 6 × 10−5 𝑚 to 8 × 10−5 𝑚. 

This results in a resonant frequency for the system of 

18.3 𝑟𝑎𝑑/𝑠 to 22.7 𝑟𝑎𝑑/𝑠. 

6.2 Frequency response 

 
Figure 6.3 – Response of the system to a reference input on the pen’s 

angle of a sine wave of amplitude 𝐴 = 0.7 and frequency of 𝜔, 

ranging from 1 to 60 𝑟𝑎𝑑/𝑠, simulated for 5 seconds. The pen’s 

absolute value of maximum angle, 𝑞𝑚𝑎𝑥, is drawn in blue, while the 

wrist’s absolute value of its maximum angle, 𝜃𝑚𝑎𝑥, is drawn in red. 

Black crosses are also illustrated, representing frequencies at which 

the system ended prematurely due to the pen slipping off the 

fingertips’ grasp. 

The system was evaluated through a range of 

frequencies, from 1 to 60 𝑟𝑎𝑑/𝑠 and an amplitude of 0.7. Its 

response was analyzed and the pen’s maximum angle 𝑞𝑚𝑎𝑥  

as well as the hand’s maximum angle 𝜃𝑚𝑎𝑥, in absolute value, 

were recorded. Figure 6.3 illustrates the systems response to 

such frequencies. 

At frequencies of 4 to 25 𝑟𝑎𝑑/𝑠 the pen begins to 

oscillate, as is possible to see in Figure 6.3, by the difference 

in value between both lines. This maximum values for the 

pen’s rotation, 𝑞𝑚𝑎𝑥 , steadily increase with the increase in 

frequency, achieving a maximum at around 19 𝑟𝑎𝑑/𝑠, found 

to be the resonant frequency of the system. 

At frequencies larger than 25 𝑟𝑎𝑑/𝑠, the system 

becomes unstable, depicted in Figure 6.3 by black crosses on 

the frequency level at which the system let the pen escape its 

grasp. To note that the progressive increase of the frequency 

results in the lowering of 𝑞𝑚𝑎𝑥 , which is a direct result of the 

system operating at a higher frequency than its resonant one. 

Curiously, at frequencies of about 45 𝑟𝑎𝑑/𝑠, the system 

becomes stable once again. However, 𝜃𝑚𝑎𝑥 > 𝑞𝑚𝑎𝑥 , and they 

are both much lower than they were at the resonant 

frequency. 

6.3 Cyclical behavior analysis 

To analyze the periodicity of the system, at frequencies 

ranging from 4 to 20 𝑟𝑎𝑑/𝑠, the parametric plotting of some 

𝜃 < 0 

𝐹𝑛 

𝐹𝑛 

𝛼 < 0 

𝑞 > 0 
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key variables is of great value. Given the periodic response 

of the system, the following parametric plot has a period 

equal to two cycles of the input forced reference frequency, 

∆𝑡 = 4𝜋/𝜔. 

  
Figure 6.4 – Parametric plot of the pen’s angle 𝑞 and the pen’s 

angular velocity �̇�. Three different system responses are plotted at 

three different input frequencies, 4, 12 and 20 𝑟𝑎𝑑/𝑠. The responses 

were recorded over a time period of 4𝜋/𝜔 of the input frequency. 

From Figure 6.4, the parametric plot has a square 

shape through all three frequencies and the successive cycles 

reinforce the square shape, meaning cyclical behavior was 

reached [19]. The impact of the input frequency on the system 

is very noticeable. An increase in the input frequency equates 

to faster and more abrupt twisting and rolling phases, evident 

in the straightness of the shape’s edges as the frequency 

increases. The maximum values for the angle and angular 

velocity,  𝑞 and �̇�, increase as well, indicating larger and 

faster oscillations. 

 

  
Figure 6.5 – Parametric plot of the pen’s angle 𝑞 and the pen’s 

angular velocity �̇�. Three different system responses are plotted at 

three different input frequencies, 46, 52 and 58 𝑟𝑎𝑑/𝑠. The 

responses were recorded over a time period of 4𝜋/𝜔 of the input 

frequency. 

At higher frequencies of 46 to 58 𝑟𝑎𝑑/𝑠, the 

response of the system evolves so as to decrease the 

magnitude of oscillation, 𝑞 − 𝜃, as had been observed in 

Figure 6.3. On a parametric plot of the pen’s angle and 

angular velocity, Figure 6.5, the system’s responses are still 

distinguishable from each other and the inverse of Figure 6.4 

can be observed, where the higher the input frequency is, the 

lesser the impact on 𝑞 and �̇�.  

It is also noticeable that, although the same period 

of two cycles of the input reference frequency was recorded, 

the pen only went through one cycle of rotation, indicating 

that the system is running at a frequency higher than the pen’s 

dynamics allow and suggesting the presence of period 

doubling [20, 21], a phenomenon where a new periodic 

trajectory emerges from the already existing periodic 

trajectory. Investigating this phenomenon further, at the input 

frequency of 58 𝑟𝑎𝑑/𝑠, the relevant parametric plot can be 

seen in Figure 6.6.  

In Figure 6.6, period doubling is clearly present, 

evident in the v-shave created in the plot. This shape takes 

form because the pen’s dynamics do not allow it to oscillate 

at the frequency at hand. The presence of a large magnitude 

of oscillation is also verified, as per the “openness” of the 

shape in the plot, meaning that the rolling phase is very 

prevalent. There is little to no evidence of both angles moving 

in synchrony, indicating that the twisting phase is very short 

lived. The pen’s angle does stay within bounds though, and 

the plot is cyclical, proving the system is stable for the 

frequency at hand. All in all, at high frequencies, the pen is 

limited to the rolling phase while being juggled between the 

fingers at a frequency higher than its resonant frequency. 

 
Figure 6.6 – Parametric plot of the pen’s angle 𝑞 and the wrist’s 

angle 𝜃, at the frequency of 58 𝑟𝑎𝑑/𝑠. The response was recorded 

over a time period of 12𝜋/𝜔 (6 cycles) of the input frequency. 

 

7 CONCLUSIONS 

7.1 Achievements 

This document goes into detail about how the act of grasping 

is sensed by the bio-mechanisms of human biology and how 

a robotic hand can be controlled to perform a task in which 

an object, a pen, is grasped and handled to perform a wiggling 

motion in between the fingertips. The controller was given a 

𝜔 = 20 

𝜔 = 4 

𝑞
 [
𝑟𝑎
𝑑
𝑠
Τ
] 

 

𝑞 [𝑟𝑎𝑑] 

𝑞 [𝑟𝑎𝑑] 

𝜔 = 58 

𝜔 = 52 

𝜔 = 46 

𝑞 [𝑟𝑎𝑑] 

𝑞
 [
𝑟𝑎
𝑑
𝑠
Τ
] 

 

𝜃
 [
𝑟𝑎
𝑑
] 
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reference signal to follow of a sine wave with a given 

amplitude and frequency. It proved quite effective at using 

the guidance of the reference to oscillate the pen, managing 

to maintain stability while operating at the resonant 

frequency of the system, of about 19 𝑟𝑎𝑑/𝑠. The system’s 

response was analyzed regarding the frequency of the 

reference input signal. At frequencies of 4 to 25 𝑟𝑎𝑑/𝑠 the 

pen begins to oscillate and at 45 to 58 𝑟𝑎𝑑/𝑠, the 

phenomenon of period doubling can be observed. 

7.2 Future work 

One of the main aspects this essay enables is the addition of 

inbound and outbound delays to the system model, similar to 

its biological counterpart [16], to better simulate a true 

bio-inspired mechanism. This implementation is expected to 

be complex, as a delay of over 100 milliseconds should be 

enough to cause the pen to slip the fingertips’ grasp. 

Furthermore, this model hopes to inspire the study of 

various forms of dexterous movement involving the handling 

of objects with a non-restrictive grasp and clever use of the 

fingers to perform complex movements with said objects. 
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